

Switched Mode Power Supply with high efficiency and best EMI design

Speaker:

Tomo Koželjnik **Area Sales Manager**

tomo.kozeljnik@we-online.de

2018 V.1 Lorandt Fölkel Public / Confidential EMC Seminar 2018

In all rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

- EMC Basics
- REDEXPERT
 - Practical component selection
- Design Your own Line Input Filter
- Conduced Emissions Measurements
 - Practical Measurements

2018 V.1 Lorandt Fölkel Public / Confidential EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Conducted Emission

- Conducted emission over wideband
- Caused by ripple current at input lines (common mode / differential mode noise)
- EMC requirements for "Conducted Emission" according ETSI, CEN, CENELEC
- E.g.: EN 55011: 2016 (Industrial, scientific and medical (ISM) radio-frequency equipment)

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

3

Δ

Radiated Emission

- Radiated emission over wideband
- Caused by:
 - Power traces on PCB
 - Power choke of DC/DC converter
- EMC requirements for "Radiated Emission" according ETSI, CEN, CENELEC

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Permeability – complex permeability

2018 V.1 Lorandt Fölkel Public / Confidential EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Core materials- Chokes (filtering)

2018 V.1 Lorandt Fölkel Public / Confidential EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

8

Transmission Modes & Filter Topologies

2018 V.1 Lorandt Fölkel Public / Confidential EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

9

Recognizing the coupling mode

common mode noise ?

differential mode noise ?

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Common mode or differential mode?

In All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

10

Snap on ferrite – typical behavior

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Snap on ferrite - Construction

- Snap on ferrite acts as an CMC
- Absorbs common mode Interferences
- Comparable with bifilar winding CMC

2018 V.1 Lorandt Fölkel Public / Confidential EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

12

Common Mode Choke – Winding Style

• bifilar

Power supply: low voltage application

• Signal: low speed signal and High speed Signal

 Power supply: "high" voltage application and low voltage DC applications; according to IEC60938 or UL1283

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

It is a Bi-directional filter

- · From device to outside environment
- From outside environment to inside device

Intended Signal - Differential mode

Interference Signal (noise) – Common Mode

Conclusion:

- "almost" no affect the signal Differential mode
- high attenuation to the interference signal (noise) Common Mode

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Common Mode Choke – Winding Style

• bifilar wE-SL2 744226

• low leakage inductor

• sectional wE-SL2 744226S

high leakage inductor

2018 V.1 Lorandt Fölkel Public / Confidential EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

16

PCB - LAYOUT RECOMMENDATIONS

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

PCB-Layout recommendations

- AC-current should flow across capacitor
- Short way for AC-current direct to GND (place double via's to GND)

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMV Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

PCB-Layout recommendations

- Avoid indirect routing of power traces
- Avoid any kind of couplings \rightarrow "*capacitive*", "*inductive*" ... etc ...
- AC-current should flow across common mode choke
- Route power traces on component layer
- Do not use via's

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

REDEXPERT®

REDEXPERT®: What is it?

Online platform for easy component selection

- Select | Compare | Simulate
- Live updates
- Easy component comparison
- Several design tools integrated
- Share results and searches easily online

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

World's most accurate AC loss model

$$P_{\text{total}} = P_{\text{dc}} + P_{\text{ac}} = P_{\text{Cu,dc}} + \left(\frac{P_{\text{Cu,ac}}}{P_{\text{core,ac}}}\right)$$

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

World's most accurate AC loss model

Würth model

Marking

- Consideration of:
- Real core shapes
- Winding structure
- Winding losses
- Losses due to air gap (fringing

effects) 2018 V.1 | Lorandt Fölkel | Public / Confidential | EMV Seminar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Steinmetz model

- Consideration of:
- Toroidal cores without an air gap

23

24

World's most accurate AC loss model

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

World's most accurate AC loss model

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

26

Start screen

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

User interface

REDEXPER	Desigi	n tools	NS	HOW TO					Proc	luct ta	able				🐂 items	SH.	ARE 🔗 S	TEFFEN
Converter	Filters: Series = WE-M	API 🗙															100 / 111	items ≡
Buck	Order Code	Series 🔳	Size	目 1 目 \$	Sp Type	▤ ७ ▤	R _{DC,typ}	I _R 🗐	l _{sat} 目	L 🗉	w 🗉	H _{Max} 🗐	T _{op} 🗐	Shielded	□ Q+ 4	/ AEC-Q 🔳	Material	Assi
	74438343022	WE-MAPI	2010		Bingle	2.20 µH	225 mΩ	1.10 A	2.50 A	2.00 mm	1.60 mm	1.00 mm	125°C	Shielded			Metal Alloy	SMT
BOOST		WE-MAPI	2506		Single	470 nH	76.0 mΩ	2.20 A	3.70 A	2.50 mm	2.00 mm	0.600 mm	125°C	Shielded			Metal Alloy	SMT
SEPIC	✓ [○] 74438313015	WE-MAPI	1610		Single	1.50 µH	189 mΩ	950 mA	2.70 A	1.60 mm	1.60 mm	1.00 mm	125°C	Shielded			Metal Alloy	SMT
Losses	74438313022	WE-MAPI	1610		Bingle	2.20 µH	337 mΩ	850 mA	2.50 A	1.60 mm	1.60 mm	1.00 mm	125°C	Shielded			Metal Alloy	SMT
	<																	>
	VH-38343022 WE-MAPI - 2010 2.20 µH - 225 mΩ Show Panet: L vs. I(T) Inductance	Y44383210047 WE-MAPI - 2508 470 nH - 78.0 mΩ K vs. I(T) Z vs. F ce / DC Current (Am	LD vs. I(T)	-MAPI - 1810 μH - 189 mΩ	Drop Orde in the tra	r Codes to add	mperature Rise	DC Current	(Ambient Tem	y perature)				Inductance D)rop / Curren	nt (Temperature	F, Add to Ca ≡ More e)	
	2.50 µH 2 µH 1.50 µH 1 µH 500 nH 0 A 500 mA	Cha 1A 1.50A 2A CL	2.50 A 3.4	T = 20°C	▼ 4.50 A	140 K 120 K 120 K 100 K 100 K 100 K 100 K 100 K 100 K 100 K 100 K 100 K	500 mA 1/	Cha A 1.50 A CL	rt 2	T = 20%	C ▼ 3.50 A	100 0 00 80 0 0 80 0 0 80 0 0 80 0 10 0 0 10 0 0 0	%	mA 1A 1.	Cha 50A 2A Cu	art 3	T = 20°C	4.50 A

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMV Seminar 2018

28

Select | Compare | Simulate **REDEXPERT** www.we-online.com/redexpert

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMV Seminar 2018

29

Conducted emissions Measurement

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMV Seminar 2018

Conducted Emission test setup

- LISN: "Line Impedance Stabilization Network"
 - Create known impedance on power lines for DUT
 - **Filter mains voltage and cut higher frequency**
 - > Transfer conducted emission noise to EMC-Receiver
- EMC-chamber is recommended but not required

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMV Seminar 2018

EUT

- Switch Mode Power Supply
- Flyback Topology
- Off line high voltage converter
 - Operating frequency 115 kHz

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

Conducted Emissions Measurement No Input Filter; line L

LINE L

(Vs)

dBuV

1 PK махн

2 AV MAXH

Step AUTO

150 kHz

In all rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

32

Delta Limit/dB

23.15

21.11

19.47

19.31

19.23

18.00

17.73

17.65

16.31

16.23

16.14

15.77

15.39

14.94

14.72

12.56

12.46

11.32

8.51

7.44

7.17

6.09

1.48

0.13

-2.61

-5.54

Final Measurement

4.886000000 MHz

40.46

CISPR Averag

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

Conducted Emissions Measurement No Input filter; line N

LINE	N	Final	Measurement				
dBµV	RBN 9 kHz MT 1 s Step AUIO Att 10 dB AUIO PREAMP OFF 90 10 MHz 10 MHz	Meas Margir Subra	Time: n: nges:	1 s 5 dB 33			
		Trace	Frequen	су	Level (dBµV)	Detector	Delta Limit/dB
1 PK NAXR 2 AV NAXR	so	1 1 1 1 1 1 1 1 1 1 1 1 1 1	370.00000000 622.00000000 874.0000000 1.13000000 2.12600000 1.49400000 230.00000000 622.00000000 622.00000000 622.00000000 874.00000000 28.96600000 874.00000000 2.13400000 0.13400000 1.49400000 1.75000000 1.49400000 3.87400000 1.75000000 1.75000000 3.49800000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.75400000 0.0000000 0.754000000 0.75400000 0.754000000 0.754000000 0.754000000 0.7540000000 0.754000000 0.754000000 0.7540000000000000000 0.75400000000000000000000000000000000000	<pre>> kHz) kHz) kHz) kHz) kHz) kHz) MHz) MHz) MHz) kHz) kHz) kHz) kHz) kHz) kHz) kHz) MHz) MHz) MHz) MHz) MHz) MHz</pre>	78.20 73.41 68.51 67.39 66.94 62.93 62.74 60.69 64.78 65.73 47.28 50.22 45.61 46.61 42.32 51.91 40.76 40.65 50.48 40.20 40.05 49.98 55.79 35.07 32.43	Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak CISPR Averag CISPR Averag CISPR Averag Quasi Peak CISPR Averag Quasi Peak	- 5.00 dB 19.70 17.41 12.51 11.09 10.94 6.93 6.74 4.69 3.66 3.28 1.28 0.97 -0.78 -3.39 -3.68 -4.09 -5.24 -5.35 -5.52 -5.80 -5.95 -6.02 -8.25 -10.93 -13.57
		2	3.746000000) MHz	31.28	CISPR Averag	-14.72

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

33

34

Design Your own Line Input Filter

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

Design your EMC Filter

	Test	Board		WCA	P-FTX2	WC	AP-CSSA	1				WE	CMB		
	Quantity:	10		890 324	023025	88535	2211002			S		М		L	
				Pitch:	10 mm	Quantity	<i>j</i> : 10	- 1							
				C:	0.15 µF	C:	680 pF			744 822 3	301	744 823	501	744 824 1	.01
Res	sistor	WA-	SNSR	U _R :	275 VAC	U _n :	250 VAC		1.1	Quantity:	2	Quantity:	2	Quantity:	2
Quantity	10	702 936	000	dV/dt:	300 V/µS	Safety (lass: X1/Y2			L:	1 mH	L:	1 mH	L:	1 mH
quantity.	10	Quantity:	20							k:	ЗA	l _R :	6 A	l _R :	10A
R:	1MΩ	Length:	15.9 mm	890 324	022 007	88535	2211003	- 1		R _{DC} :	35 mΩ	R _{DC} :	13 mΩ	R _{DC} :	7 mΩ
				Pitch:	7,5 mm	Quantity	<i>j</i> : 10	- 1		744 0001	100	744022	100	744 004 0	200
	1000			C:	0.015 µF	C:	1000 pF			144 022 4	2	144 023	-22	744 024 0	22
	WR	TBL		U _R :	275 VAC	U _n :	250 VAC			Quanuty:	2	Quantity:	2 0.0 mH	Quantity.	2 0.0 mH
	691 134 71	0 002		dV/dt:	500 V/µS	Safety (Jass: X1/Y2			Li	2.2 111	Li	2.2 111	Li	2.2 1111
	Quantity:	10				-		- 1		18. D ·	70 mO	R.	20 mQ	R.	20 mO
	VDE:	450 VAC/24 A		890 324	023006	88535	2213011			n _{DC} .	70 1152	n _{DC} .	30 11152	n _{DC} .	2011152
	UL:	300 VAC/16 A		Pitch:	10 mm	Quantity	<i>ı</i> : 10		V	744 822 2	233	744823	305	744 824 4	133
	R _{contact} :	20 mΩ		C:	0.01 µF	C:	1000 pF		V	Quantity:	2	Quantity:	2	Quantity:	2
	0.05 up to 2 m	nm²Wires		U _R :	275 VAC	U _R :	250 VAC	WE C	MANC	L:	3.3 mH	L:	5 mH	L:	3.3 mH
				dV/dt:	500 V/µS	Safety (Jass: X1/Y2	WE-0		le:	1.5A	I _B :	2.5 A	l _B :	4A
	WD_	SWGH						M		R _{pc} :	120 mΩ	R _{pc} :	95 mΩ	R _{pc} :	35 mΩ
	wn-s	SWSH				88535	2213015	7448030	0509						
7466113		7466114				Quantity	r: 10	Quantity:	1	744 822 1	10	744823	210	744 824 3	110
Quantity:	10	Quantity:	10			C:	2200 pF	L:	9 mH	Quantity:	2	Quantity:	2	Quantity:	2
I _R :	50 A	I _R :	50 A			U _R :	250 VAC	l _R :	5 A	L:	10 mH	L:	10 mH	L:	10 mH
Thread:	M3	Thread:	M4			Safety (Jass: X1/Y2	R _{DC} :	28 mΩ	l _e :	1A	I _B :	2 A	I _R :	ЗA
										R _{oc} :	360 mΩ	R _{DC} :	125 mΩ	R _{DC} :	105 mΩ
			WE	-LF				L				-			
744 062 400 07		744 662 200 2		VU2 744 662 100 7		74466200	27	7448040	0/07	744 822 1	20	744823220		744 824 220	
Quantity:	1	Quantity:	1	Quantity:	1	Quantity:	1	Quantity:	1	Quantity:	2	Quantity:	2	Quantity:	2
L:	U./ mH	L:	2.2 mH	L:	6.8 mH	L:	27 mH	L:	/ mH	L	20 mH	L	20 mH	L:	20 mH
I _R :	4 A	I _R :	2A	I _R :	1 A	I _R :	0.4 A	I _R :	7 A	k:	0.5A	I _R :	1.5 A	I _R :	2A
R _{DC} :	27 mΩ	R _{DC} :	100 mΩ	R _{DC} :	300 mΩ	R _{DC} :	1.200 mΩ	R _{DC} :	20 mΩ	R _{DC} :	540 mΩ	R _{oc} :	270 mΩ	R _{DC} :	220 mΩ

2018 V.1 | Lorandt Fölkel | Public / Confidential | EMV Seminar 2018

Würth Elektronik eiSos GmbH & Co.KG

You can reach us: +49 7942-945-0 +49 7942-945-5000 www.we-online.com eisos@we-online.de

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

Conducted Emissions Measurement With input Filter; Line; (Cx=0,47uF, L=2x10mH, Cx=0,33uF;)

/largin: Subrang	es:	20 dB 15				
race	Frequenc	У	Level (dBµV)	Detecto	r	Delta Limit/dB
2	28.966000000	MHz	38.81	CISPR	Averag	-11.19
2	13.354000000	MHz	33.83	CISPR	Averag	-16.17
2	9.318000000	MHz	33.53	CISPR	Averag	-16.47
2	4.282000000	MHz	28.78	CISPR	Averag	-17.22
2	3.274000000	MHz	28.27	CISPR	Averag	-17.73
2	21.414000000	MHz	31.98	CISPR	Averag	-18.02
1	27.454000000	MHz	41.36	Quasi	Peak	-18.64
1	14.038000000	MHz	41.10	Quasi	Peak	-18.90
2	1.762000000	MHz	26.98	CISPR	Averag	-19.02
2	14.658000000	MHz	30.88	CISPR	Averag	-19.12
1	13.534000000	MHz	40.46	Quasi	Peak	-19.54
2	6.802000000	MHz	30.22	CISPR	Averag	-19.78
2	5.794000000	MHz	29.44	CISPR	Averag	-20.56
1	20.298000000	MHz	37.26	Quasi	Peak	-22.74
1	9.898000000	MHz	32.00	Quasi	Peak	-28.00

1 s

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018

O All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

38

Conducted Emissions Measurement With input Filter; line N; (Cx=0,47uF, L=2x10mH, Cx=0,33uF)

Subra	iges.	15			
Trace	Frequenc	у	Level (dBµV)	Detector	Delta Limit/dB
2	28.966000000	MHz	38.32	CISPR Avera	ng -11.6
2	13.350000000	MHz	37.41	CISPR Avera	ig -12.5
2	21.406000000	MHz	35.92	CISPR Avera	ng -14.0
1	14.310000000	MHz	44.19	Quasi Peak	-15.8
2	9.318000000	MHz	33.77	CISPR Avera	-16.2
1	12.430000000	MHz	43.43	Quasi Peak	-16.5
1	27.954000000	MHz	42.43	Quasi Peak	-17.5
2	4.282000000	MHz	28.37	CISPR Avera	ng -17.6
2	3.274000000	MHz	27.89	CISPR Avera	ig -18.1
2	6.798000000	MHz	30.56	CISPR Avera	ng -19.4
2	1.762000000	MHz	26.50	CISPR Avera	ng -19.5
2	14.790000000	MHz	30.49	CISPR Avera	-19.5
2	754.000000000	kHz	25.58	CISPR Avera	-20.4
1	9.918000000	MHz	38.82	Quasi Peak	-21.1
1	18.070000000	MHz	35.86	Quasi Peak	-24.1

2018 V.1 Lorandt Fölkel Public / Confidential EMV Seminar 2018