

Switched Mode Power Supply with high efficiency and best EMI design

Speaker:

Lorandt Fölkel M.Eng Field Application Engineer & Business Development Manager

lorandt.foelkel@we-online.de

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

!!! Questions ???

• Do you think that ...

... a DC/DC converter "generate <u>Conducted Emission</u>"?

- ... the EMC of a DC/DC converter is "affected only by the PCB layout" ???
- ... an "<u>oscilloscope can help</u> you to carry out any EMC tests" ???

Agenda

- EMC Requirements for DC/DC Converter
- EMI Noise Consideration from Power Source
- Filter Topologies
- Filter design
- PCB layout recommendations
- Shielded vs. Unshielded Inductor
- Storage Inductor selection
- Design tools
- Live EMC Demonstration
- Energy Harvesting
- Wireless Power Charging Live Demonstration
- Power Modules

REQUIREMENTS IN EMC

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

EMC - Standards

- EN 61000-3-2 Limits for <u>harmonic current</u> emissions (equipment input current up to and including 16 A per phase)
- EN 61000-3-3 Limitation of voltage changes, voltage fluctuations and <u>flicker in public low-</u> voltage supply systems
- EN 55011 ISM Equipment (Industrial, Scientific and Medical) also known as CISPR-11
- EN 55013 Audio and <u>Broadcast receiver equipment</u>
- EN 55014-1 <u>House hold appliances</u>, electric tools and similar apparatus
- EN 55015 Limits and methods of measurement of radio disturbance characteristics of <u>electrical lighting</u> and similar equipment
- EN 55022 ITE (Information Technology Equipment), also known as CISPR-22
- EN 61000-6-1 Generic immunity standard for residential, <u>commercial and light industry</u> environments
- EN 61000-6-2 Generic immunity standard for industrial environments
- EN 61000-6-3 Generic emission standard for residential, <u>commercial and light industry</u> environments
- EN 61000-6-4 Generic emission standard for industrial environments
- EN 61000-4-2 Electrostatic discharge immunity test (ESD)

CE Marking

- With the formation of the single European market, standardization was required to remove technical barriers to trade.
- New Approach Directives were introduced to remove these barriers to trade
- 20 regulations and directives:
 - LVD Low Voltage Directive 2014/35/EU
 - EMC Electromagnetic Compatibility 2014/30/EU
 - R.E.D. Radio Equipped Directive 2014/53/EU
 - MD Machinery Directive 2014/90/EU

What is the meaning of EMC ?

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

What's all the fuss about EMC?

- In Europe, we have a mechanism called CE Marking
- It is applicable to <u>any electrical/electronic product</u>
- EMC Directive, regulation to ensure that intentional RF transmission signals are not interfered with
- Ensures that Electrical/Electronic devices continue to operate as intended in a Electro Magnetic Environment
 - Failure to comply with the law can be an offence, either criminal, civil or both

What is the meaning of the CE logo ?

Vom t ²	No 2908, East Building, Yihai Plaza, Chuangye Road, Nansi District, Shenzhen, Guangdong, P.R. China (5180
EC Declar	ation of Conformity
	Declaration No.
Applicant	Co. LTD
Applicant .	Park, North of Wuhe Av., P.R. China,
Manufacturer	Co ITD
manufacturer	I Park, North of Wuhe Av., P.R. China.
Description of : Media	a Converter
Equipment	
Trade Name	
Report No	
Issued Date : May	9 2008
Test EN 55	5022: 2006
Standards EN 55	024: 1998+A1: 2001+A2: 2003
e EUT described above has been mpliance with the council EMC di	tested by us with the listed standards and found in rective 2004/108/EC. It is possible to use CE marking to
monstrate the compliance with th	is EMC directive.
	STECHNON
	E OMT S
	Lat Director 10.11
	Date: May. 9, 2008
s consulto in this second are conclusible and	y to the equipment tested. This report shall not be re-produced exc

Other International EMC approval marks

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Conducted Emission

- Conducted emission over wideband
- Caused by ripple current at input lines (common mode / differential mode noise)
- EMC requirements for *"Conducted Emission"* according ETSI, CEN, CENELEC
- E.g.: EN 55013 : 2006 (Radio & TV broadcast receivers and associated equipment)

Radiated Emission

- Radiated emission over wideband
- Caused by:
 - Power traces on PCB
 - Power choke of DC/DC converter
- EMC requirements for "Radiated Emission" according ETSI, CEN, CENELEC

EN 61000-6-3 : 2007 (Home)
 30dB @ 30MHz~230MHz μV/m
 37dB @ 230MHz~1GHz μV/m

EN 61000-6-4 : 2007 (Industrial)
 40dB @ 30MHz~230MHz μV/m
 47dB @ 230MHz~1GHz μV/M

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Design phase for EMC

- Economical point of view:
- Depends on you when will start to design EMC conform

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

How can we check the EMC ?

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

EMC Standards and tests are seen by customers as

HUGE PROBLEMS

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

EMC – **Basic Test**

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

What causes EMI in a product?

 Clock frequencies. E.g Crystal 25MHz, CPU 2.6GHz
CLK

- Data rates. E.g USB 2.0 480Mbps, SATA II 300Mbps
- DC/DC convertors and Switch mode power supplies (SMPS) E.g 135kHz, 2MHz

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Magnetic and Material Basics

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

The magnetic field – Field Model

Magnetic field- Magnetic field strength

Magnetic field- Magnetic field strength

The magnetic field

Induction in air:

Induction in a ferrite:

$$B = \mu_0 \cdot H$$

linear function, because $\mu r = 1 \Rightarrow \text{constant!}$
The relative permeability is a:

$$B = \mu_0 \cdot \mu_r \cdot H$$

material-
frequency-
temperature-
current-
pressure-

$$B = \mu_0 \cdot \mu_r \cdot H$$

Permeability – Core material parameter

Temperature influnce

- The magnetization depends from the temperature

Permeability – complex permeability

=1 turn

Core material-Parameter

 $Z = \sqrt{R^2 + X_L^2}$

Core materials - Inductors (Energy storage)

Which switching frequency do you use?

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Core materials- Chokes (filtering)

Noise frequency range must be known

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Core Losses

e.g. electrical energy transformed into \rightarrow thermal energy

Electro Magnetic energy cannot disappear, it will be just transformed into other energy form

the core losses from ferrite transform the noise energy into heat

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Transmission Modes & Filter Topologies

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

EMC - Coupling

\rightarrow Primary procedure

...to aim at source a low noise

\rightarrow Secondary procedure

... eliminate the noise thru interrupting the coupling way

\rightarrow Tertiary procedure

... increase the noise immunity at load

Recognizing the coupling mode

common mode noise ?

differential mode noise ?

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Common mode or differential mode?

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Snap on ferrite – typical behavior

[©] All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

34

Snap on ferrite - Construction

- Snap on ferrite acts as an CMC
- Absorbs common mode Interferences
- Comparable with bifilar winding CMC

Common Mode Filter – How it works

It is a Bi-directional filter

- From device to outside environment
- From outside environment to inside device

Intended Signal - Differential mode

Interference Signal (noise) – Common Mode

Conclusion:

- "almost" no affect the signal Differential mode
- high attenuation to the interference signal (noise) Common Mode

Insertion loss – Mathematical Definition

• System attenuation

$$A = 20 \cdot \log \frac{Z_A + Z_F + Z_B}{Z_A + Z_B} \qquad in \ (dB)$$
$$Z_F = \left[10^{\frac{A}{20}} \cdot \left(Z_A + Z_B\right)\right] - \left(Z_A + Z_B\right) \qquad in \ (\Omega)$$

Insertion loss - Definition

• Practical values for source and load impedances:

<1 2 Ω
10 20 Ω
50 90 Ω
90 >150 Ω

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017
Check the results in the EMC lab

\rightarrow Measuring the emission and compare with the solution

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

44

Chip bead ferrite – peak current behavior

Ferrite can be destroyed, might not fail directly => "creeping process"

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

at 22A...you can smell it!

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

EMI NOISE SOURCES

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Representative noise sources

- Input current caused by voltage ripple
- Power traces and choke radiate EMI
- Output current caused by voltage ripple

- "Conducted Emission" "Radiated Emission"
 - "Conducted Emission"
- Radiated emission will increase by using long input / output lines(cables)

 \rightarrow

 \rightarrow

 \rightarrow

Conducted noise at converter input

- Conducted Emission is generated by voltage drop across R_{Sup} and ESR_{L} $V_{Noise} = Rsup * Iin + ESR * ICap$
- VNoise = Rsup * lin + ESR*ICap
- Resonance circuit is formed by L_{sup} , C_{in} and ESL_{Cin} $f_0= 1 / 2\Pi \sqrt{(Lsup-ESL)*Cin}$
- Different harmonics due to fundamental frequency from f_{DC/DC} and f_{Resonance Circuit}

Conducted noise at converter output

Conducted emission is generated by voltage drop at ESR_c

 $U_{Noise} = ESR_{Cout} * ICout$

Resonance circuit is formed by C_{Dconverter}, C_{Out}, L_{Converter}, and ESL_{Cout}

$$f_0 = \frac{1}{2\pi\sqrt{(ESL_{cout})*COut}}$$

Different harmonics due to fundamental frequency from f_{DC/DC} and f_{Resonance Circuit}

Radiation of PCB traces

- Power and signal loops have antenna characteristics
- Radiation can occur over the entire power and signal loops
- Field strength depends on spanned loop, peak value of alternating current, frequency, distance between noise source and noise receiver
- Design recommendations:
 - Keep power and signal traces as short as possible
 - > Keep power and signal loops as small as possible
 - Route the trace over GND plane

FILTER DESIGN

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

"L" Input filter (minimal recommend filter)

Simple L-Filter

- > Input filter reduce current ripple on input line
- > Input filter reduce differential mode noise on input line
- > Input filter reduce radiated emission via input traces

Attention!!! This filter is not efficient to reduce common mode noise on input lines

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Calculating input inductance

$$L_{filter} = \frac{ESR(DC)(1 - DC)}{f(\frac{I_{sup}}{I_{con}} - \frac{ESR}{R_{f}})}$$

- ESR = Effective series resistance of input capacitor
- DC = Converter duty cycle
- I_{con} = Peak-to-peak input ripple current
- I_{sup} = Required peak-to-peak ripple current for buck converters $I_{con} \approx I_{out}$
- R_f = "Damping" resistor (for lower Q)

➢ For better filter performance choose next higher standard inductance value

Example:

$$V_{out} = 5.0V$$

$$I_{out} = 4.0A$$

$$f = 2.5MHz$$

$$ESR = 0.08\Omega$$

$$DC = 0.5 (\%50)$$

$$I_{con} \approx I_{out}$$

$$I_{sup} = 0.1A$$

$$R_{f} = 0 (\rightarrow \infty)$$

$$L_{filter} = \frac{0.08\Omega x 0.5(1 - 0.5)}{2.5MHz(\frac{0.1A}{4A} - 0)} = 320nH$$

 Choose 1µH (closest standard value)
 e.g.: WE-LQ "744 045 001 or: WE-PD2 "744 773 0"

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Calculating rated current IL

- $\bullet \mathbf{I}_L = \frac{(Vout)(Iout)}{(Vin)(E)}$
- Vout =Output Voltage
- Iout= Output Current
- Vin= Input Voltage
- E= Efficiency (/100)
- •For Example:

$$I_L = \frac{(5V)(4A)}{(20V)(0,8)} = 1,25A$$

To avoid overload considerations choose a choke with higher rating current
To avoid losses in efficiency choose a choke with low DCR

Wideband input filter

(recommended filter solution)

- T-filter recommend for wideband filtering
 - \succ L_{in} for low frequency filtering (DC/DC converter switching frequency)
 - Ferrite for high frequency filtering
 - > C_{filter} shorting ACnoise to GND (220pF < C_{filter} < 1nF, low ESR)

Attention!!! This filter is not efficient to reduce common mode noise on input lines

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

"L / C" output filter (minimal recommended filter)

- Simple L/C Filter
 - Output filter reduce voltage ripple on output traces (Conducted Emission)
 - Output filter reduce radiated emission via output traces (Radiated Emission)
 - > No optimal solution for radio power devices

Attention!!! This filter is not efficient to reduce common mode noise on output lines

²⁰¹⁷ V.1.0 Lorandt Fölkel **Public** / Confidential EMC Seminar 2017

Calculating "L / C" output inductor

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 <> $L_{filter} = \frac{1}{(2\pi \frac{1}{10}f0)^2 C_{filter}}$

• Example:

- (1) Choose capacitor e.g. 1µF, Electrolytic, low ESR
- (2) Determine switching frequency of DC / DC converter
- (3) Calculate inductor
- (4) Choose next larger inductance value

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

"T" - output filter (recommended filter solution)

- T-filter recommend for wide bandwidth filtering
 - L_{filter} for low frequency filtering (DC/DC converter switching frequency)
 - Ferrite for high frequency filtering
 - > This kind of output filter is for powering radio devices high recommended

Attention!!! This filter is not efficient to reduce common mode noise on output line

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Decoupling common mode noise

- For common mode rejection use common mode chokes
- For supplying over long distance common mode chokes are recommended
- Additional capacitor reduce differential mode noise
 - > Small value for ceramic capacitor is recommended
 - > Capacitor and common mode choke act as a LC filter for differential mode noise
- Can be used for input and output lines

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

PCB - LAYOUT RECOMMENDATIONS

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

PCB-Layout recommendations

- Keep PCB traces as short as possible
- Avoid indirect trace routing
- Avoid any kind couplings \rightarrow "capacitive", "inductive"
- AC-current should flow across capacitor
- Short way for AC-current direct to GND (place double vias to GND)

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

PCB-Layout recommendations

- Avoid indirect routing of power traces
- Avoid any kind of couplings → "capacitive", "inductive" ... etc ...
- AC-current should flow across common mode choke
- Route power traces on component layer
- Do not use vias

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

PCB-Layout recommendations

DC/DC buck converter

not recommended

recommended

- Avoid GND planes under inductor (between inductor pads)
- Don't route any kind of signals (analog, clock) under the inductor
- Fill out unused space on PCB with GND (flood)

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

PCB-Layout recommendations

Layer 1: power components

Layer 2: small signal

Layer 3: pure GND layer

Layer 4: small signal / controller components

Layer 1: power components Layer 2: pure GND layer Layer 3: smal signal Layer 4: small signal / controller components

not recommended

recommended

- PCB-design of at least 4 layers is recommended
- Place a solid ground plane below the power component layer
- Minimize loops for power components
- Keep power traces as short as possible
- Establish good GND connections using low impendence vias

SHIELD VS. UNSHIELD

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Magnetic field leakage

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Magnetic Field – Shielded vs. Unshielded

Magnetic field

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Radiation by inductor

WE - PD2 unshielded 10µH, 2MHz Clock, 1A

WE – PD shielded 10µH, 2MHz Clock, 1A

19dBm difference

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Magnetic leakage shielded vs. unshielded

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Magnetic Fields – Conducted Emission Measurement

Buck Converter ST L4960/2.5A/fs 85-115KHz

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Magnetic Fields – Conducted Emission Measurement

Power supply V 1.1

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

PCB

Feedback Input

L4960

Schematic

L4-74477

GND

915

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

+5U

100nF

Magnetic Fields – Be Aware!

- Select the right parts for your application.
- Do not always look on cost.

Very easy solution with a dramatic result!

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Boost converter Bad Example

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Boost converter Bad Example

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Boost converter Bad Example no filter

Receiver					
RBW ((CISPR) 120 kHz	MT 100 ms			('
Input DC 🖷 Att	10 dB	Preamp OFF	Step LIN		
Level	dBµV		Frequency	100.00	00000 MHz
Max Peak	17.13 🛛	20	40	60	80 100
Average	5.65 🛛	20	40	60	80 100
Scan 👴 1 Pk Clrw 🕒 2 Av Clrw					
Limit Check	1 MHz	FAIL FAIL	10	MHz 	
80 dBuy Line 55022-QP		FAIL			
70, dBµV					
760/4841/1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			l a d ua hiam		
50 dBµV					
40 dBµV					
30 dBµV					
20 dBµV					
O dBµV					
Start 150.0 kHz Stop 100.0 MHz					

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Boost converter Bad Example with filter

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Boost converter Good Example

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017
Boost converter Good Example

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Boost converter Good Example

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

STORAGE INDUCTOR SELECTION

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Inductor selection

Example: Step down converter
$$U_{in}=15V$$

 $f_{swtch}=200 \text{ KHz}$
 $1 DC = \frac{U_{out}}{U_{in}} = \frac{5V}{15V} \approx 0.33$
 $2 I_{rated} \approx I_{out} = 1A$
 $3 I_{ripple} \approx 20\% \dots 40\% \cdot I_{out} = 0.2 \dots 0.4A$ (practical values)

$$(4) L = \frac{DC \cdot (U_{in} - U_{out})}{f_{switch} \cdot r \cdot I_{out}} = \frac{0,33 \cdot (15V - 5V)s}{200E3 \cdot 0,2 \cdot 1A}$$

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

Definition of saturation currents

Definition Würth Elektronik: e.g. WE-PD

Public / Confidential | EMC Seminar 2017 2017 V.1.0 Lorandt Fölkel

What is saturation current?

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

LIVE EMC DEMONSTRATION

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

AC/DC CONVERTER EMI

2017 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMC Seminar 2017

Transformers for EMC – What to choose?

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Transformers for EMC – No external gaps

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Transformers for EMC – No drum cores

- Drum core style
- Very large gap
- Much radiation

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Transformers for EMC – No EI core

- El core style
- Mylar or tape used for gap
- Three unshielded gaps

Not a good solution!

Transformers for EMC – Gap

- Gap must be perpendicular to flux lines
 - Here only one side is gapped
- Uneven gaps are inefficient. => Why?
 - Core saturates at minimum gap.
 - Requires a larger gap
- Also larger gap More potential EMI

Transformers for EMC – Internal shields

- Shield both conducted and radiated noise
- Copper foil or wound magnet wire?
- Copper foil shields Expensive, => Why?
 - Must build shield
 - Must be covered with tape
 - Winding machine stopped to apply
- All shields take away space from winding area

Transformers for EMC – External shields

- How do external shields differ from internal shields?
- Shield radiate noise only!
- As expensive as internal shields

Transformers for EMC – Y-Cap termination

- Noise couples through the transformer via C_{ww}
 - Noise seeks path to primary circuit
 - Without path, noise may become conducted emissions
- Y-Cap across transformer reduces noise
 - Tune the capacitor for optimum loss vs. noise reduction
 - Capacitor usually in the 470pF to 4.7nF range
 - Y-Caps to transformer terminals not on switch nor on diode
 - Close to transformer as possible

016 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMV Messago Düsseldorf 2016

What Can We Do?

Decrease Cww?

What Else Can We Do?

www.we-online.com

Transformers for EMC – Reducing C_{ww}

- High Cww causes conducted emissions
- May reduce Cww, but what happens?
- Leakage inductance increases
- L_{LKG} can be controlled by Snubber but efficiency and cost suffer
- Balance between Cww and Lleakg

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

Transformers for EMC - Small designs

Why build smaller designs?

- Build smaller more compact transformers
- Smaller transformers have less parasitic
 - Less capacitance
 - Smaller leads (e.g. smaller antennas)
 - Smaller gaps
 - Less leakage inductance
- Less conducted and less radiated noise

Transformers for EMC – Power Supply

2010 V.I.0 | Lorandt Folker | Public / Confidential | Elwy Messago Dusseldon

Transformers for EMC – Example 1

Transformers for EMC – Example 2

Transformers for EMC – Example 3

- With common mode choke
- With adjusted Snubber
- With adjusted Y-Cap

QPeak Avg. Peak Avg.

2016 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMV Messago Düsseldorf 2016 © All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Transformers for EMC – Example 4

Pegel [dBµV]

2016 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMV Messago Düsseldorf 2016

Transformer for EMC – Conclusion for this power supply

Optimized Snubber

Common Mode Noise Suppression

Radiated Emissions made by AC-DC Converter No Filter- no Y -Cap

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Radiated Emissions made by AC-DC Converter No Filter- using Y -Cap

Radiated Emissions made by AC-DC Converter Use Input Filter & Y - Cap

CY1

4.7nF

CY2

Y- Cap

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Radiated Emissions made by AC-DC Converter With Input Filter & Y -Cap

INPUT FILTER

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Conducted Emissions made by AC-DC Converter without Input Filter with Y-Cap

Conducted Emissions made by AC-DC Converter with Input Filter & Y-Cap

OTHER EMC SITUATION FOR AC/DC CONVERTER

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Radiated Emissions made by AC-DC Converter without Ferrite bead and without Y -Cap

Radiated Emissions made by AC-DC Converter with Ferrite bead and without Y -Cap

Radiated Emissions made by AC-DC Converter with Ferrite bead and without Y -Cap

- Uin: 230VAC,
- lout: 4,16A,
- Polarization:
- Norm:

Uout: 12VDC fsw: 90kHz Horizontal

EN55022A

dBµV/m 100 0 w/o Ferrite bead with Ferrit bead -30 30MHz

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

1GHz

Radiated Emissions made by AC-DC Converter with Ferrite bead and with Y -Cap

- Selection of Y Cap
 - High freq. type
 - High Voltage
 - Low ESR
 - Small package
 - Example: WCAP-CSSA 1nF
- Selection of Ferrite bead:
 - NiZn Ferrite bead
 - Small size bead
 - Example: WE-SAFB 4x2 mm, 2500hm @ 90 MHz

Radiated Emissions made by AC-DC Converter with Ferrite bead and with Y -Cap

- Uin: 230VAC,
- lout: 4,16A,
- Polarization:
- Norm:

Uout:12VDCfsw:90kHzHorizontal

EN55022A

Norm:

Radiated Emissions made by AC-DC Converter with Ferrite bead and with Y –Caps + Snap Ferrite

- Uin: 230VAC,
- lout: 4,16A,
- Polarization:
- Norm:

Radiated Emissions made by AC-DC Converter with Ferrite bead and with Y –Caps + Shielding

²⁰¹⁶ V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

OTHER EMC SITUATION FOR A DC/DC CONVERTER

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

DC/DC Converter with galvanic separation

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

DC/DC Converter with galvanic separation

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

DC/DC Converter with galvanic separation 18V input no filter

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

DC/DC Converter with galvanic separation 24V input no filter

DC/DC Converter with galvanic separation 32V input no filter

DC/DC Converter with galvanic separation 24V input with input filter

MEASURMENT TECHNIQUES

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Measuring voltage ripple

Example:	
U _{Out}	: 5 V
Z _{out}	: 50 Ω
I _{Out}	: 100 mA
I _{GND}	: 20 mA
R_{GND}	:1Ω

 $U_{Drop} = RGND * IGND = 20mV$

- Avoid incorrect voltage amplitude caused by GND / PE loops
 - Higher currents causes higher voltage drop
- Use isolation transformer
- Don't use probes with ground clips to reduce spikes
 - Inductive coupling by ground clip

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Conducted Emission test setup

- LISN: "Line Impedance Stabilization Network"
 - Create known impedance on power lines for DUT
 - Filter mains voltage and cut higher frequency
 - > Transfer conducted emission noise to EMC-Receiver
- EMC-chamber is recommended but not required

DC-LISN

- DC-LISN allow measurement of conducted emission at DC/DC converters
- Decouple the DC from the EMC receiver
- Creates 50Ω impedance for EMC-receiver
- Just differential noise measureable

Ripple-Measurement

for a clean external connection

2017 V.1.0 | Lorandt Fölkel | Public / Confidential | EMC Seminar 2017

EXAMPLES FOR BAD DESIGN

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

- High Emissions for Conducted
- QP & AV limits exceed

- No Input Filter
- Simple Pi Filter → Layout mistake!
- Wrong positioned Filter
- Simple 2 Layer
- Bad routing

Un insolated DC/DC converter

- No input filter
- Bad Layout

- High emissions for radiated
- Limits over shooted

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

- No input filter
- Simple 2 layer
- Wrong position for output capacity
- Bad Ground routing

DESIGN TOOLS

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

WE Component Selector

10 15

Jin.calo 15 /V

WE Component Se Datei Hilfe	elector - [Inductor Inductor Selector	Selector] FLEX <u>T</u> ransformer Do	esigner <u>R</u> F Ind	uctor Finder	_hip Bead Ferriti	e Selector <u>F</u> ens	ter			_ 8 >
Buck Converter			inductor 🔺	Series	Size	- OrderCode	Inductance	BdcTun	BatedCurrent @ Tn	Sat
Uin = 10 - 15 V	V t = 0,36		Single	WE-PD	1260	744771118	18.00 uH	29.00 m0hm	3.48 A @ 40.00 K	1
Uf = 0.7 V	ton = 1,45 μs	1.1	Single	WE-PD	1260	744771122	22,00 μH	31,00 m0hm	3,37 A @ 40,00 K	
$lout = 3.4 \pm 20.\%$	L opt = 24,20 µH	Finstellungen	Single	WE-PD	1280	744770118	18.00 uH	32,00 m0 hm	4,20 A @ 40.00 K	
	1 - 200 KH2		Single	WE-PD	1280	744770122	22,00 µH	33,00 m0hm	4,10 A @ 40,00 K	
2	1 3 8 8 9		Single	WE-PD	1280	744770127	27.00 µH	35.00 m0hm	3.70 A @ 40.00 K	
G 15			Single	WE-PD	1210	7447709220	22,00 µH	23,30 m0hm	5,30 A @ 40,00 K	
D 10			Single	WE-PDF	1064	7447798181	18,00 μH	27,50 mOhm	4,70 A @ 40,00 K	
й s			Single	WE-PDF	1064	7447798221	22,00 µH	35,60 m0.hm	4,10 A @ 40,00 K	
	- I		Single	WE-PDF	1064	7447798241	24.00 uH	38.00 m0hm	4.00 A @ 40.00 K	
0 2	4 6 8 Zeit (us)	10 12		WE-PDF	1064	7447798271	27.00 uH	40.50 m0hm	3.90 A @ 40.00 K	
	zen (ps)			WE-HCI	1365	7443551181	18.00 uH	22.00 m0.hm	7 50 A @ 50 00 K	
Drossel WE-PDF 744	47798221 in der Anwe	ndung		WE-HCI	1365	7443551221	22.00 µH	24 70 m0.hm	6 00 A @ 50 00 K	
l peak = 3,33 A Δ1 L = 0,66 A	DC Loss = AC Loss = I	321,69 mW hicht verfügbar	Single	WE-HCI	1890	74435572200	22,00 μH	14,60 mOhm	11,00 A @ 50,00 K	
Temp. Rise = 25,65 I	K Total Loss	= 49,04 mW = 370,74 mW	•							•
33 30 4 4 30 4 30 4 30 28 28 28 28 28 28 28 28 28 28 28 28 28		0 11 12 13 14 15 16 17 ngsspannung (V)	10 ² (HI)				200 (150 () () () () () () () () () ()			
	1 ens = 2.0	00 A	100				0			
			0	E	10	15 2	0 0 4	1 2 3 4	4 5 6 7	8 9
	Buck Converter Uin = 10 - 15 \lor Uin = 3A + 20 $\%$ Iout = 3A Drossel WE-PDF 74 1 peak = 3.33A A L = 0.66 A Temp. Rise = 25.65 35 35 32 4 22 24 24 24 26 34 4 25 25 24 24 26	Buck Converter Uin = 10 - 15 V Uout = 5 V Log = 24,20 µH Iout = 3A + 20 % f = 250 kHz Drossel WE-PDF 7447798221 in der Anwe Drossel WE-PDF 7447798221 in der Anwe Drossel WE-PDF 7447798221 in der Anwe Drossel WE-DF 744779821 in der Anwe Drossel WE-DF 7447779821 in der Anwe Drossel WE-DF 7	Buck Converter Un = 10 - 15 V U = 0.7V U = 0.7V U = 0.7V U = 0.7V L = 0.28 L = 0.20 KHz Einstellungen Drossel WE-PDF 7447798221 in der Anwendung I peak = 3.33A A L = 0.66A Temp. Rise = 25.65K	Buck Converter Un = 10 - 15 ∨ U = 0.7 ∨ Uout = 3 ∧ + 20 % T = 250 kHz L = 250	Buck Converter Uin = 1015 V V t = 0.36 Uin = 1015 V L op t = 24.20 µH Iout = 3 A + 20 % r = 250 kHz Iout = 3 A + 20 % r = 250 kHz Drossel WE-PDF 7447798221 in der Anwendung I peak = 3.33 A Δ1 L = 0.66 A Temp. Rise = 25.65 K Of grad and an and and	Buck Converter Vt = 0.36 Size Uin = 10 · 15 V L opt = 24,20 µH	Buck Converter Uin = 10 -15 V V t = 0.36 U out = 3A + 20 % t = 250 kHz imstellungen 0 0 0 744771118 10ut = 3A + 20 % r = 250 kHz imstellungen imstellungen 0 0 0 744771118 0 0 0 0 744770112 Single WE-PD 1280 744770122 Single WE-PD 1280 7447798211 Single WE-PDF 1064 7447798211 Single WE-PDF 1064 7447798211 Single WE-PDF 1064 7447798211 Single WE-PDF 1064 7447798211 Single WE-HCI 1385 7443551221 Single WE-HCI <	Buck Converter Inductor Series Size OrderCode Inductor Uin = 10.15 V Vt = 0.36 ton = 1.45 us ton ton = 1.45 us ton = 1.45 us	Buck Converter Un = 10 - 15 V Un = 0.72 V Uout = 3.4 + 20.2 V 0 = 2 + 20 Hz	Buck Converter Inductor. Series Size OrderCode Inductor.es RdcTyp Rate/Durrent @ Tn Uij = 10:15 V Uij = 12:00 145 yz Log = 24.20 yil Log = 24.20 yil 3:37 A @ 40.00 k Ibout = 5V Log = 24.20 yil Einstellungen Single VE-P0 1260 74477118 18/00 µH 22/00 µH 3:00 mChm 3:37 A @ 40.00 k Ibout = 5V Log = 24.20 yil Einstellungen Single VE-P0 1280 74477112 22.00 µH 3:00 mChm 3:37 A @ 40.00 k Ibout = 5V Log = 24.20 yil Single VE-P0 1280 74477012 22.00 µH 3:00 mChm 4:10 A @ 40.00 k Ibout = 5V Single VE-P0 1280 74477012 22.00 µH 3:00 mChm 3:00 mChm 3:00 mChm 4:00 k 4:00 k 4:00 k

WE Component Selector

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

REDEXPERT

www.we-online.com/redexpert

A Start Würth Elektronik Group Sign in 🛛 🚟 English 🔻

ore than you expect

158

Simulation – WEBENCH

http://www.we-online.de/web/de/electronic_components/toolbox_pbs/webench.php

Simulation – LTSpice IV

http://www.linear.com/designtools/software/#LTspice

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Energy Harvesting to Go kit

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

WE WPCC Demo Kit

2016 V.1.0 | Lorandt Fölkel | **Public** / Confidential | EMV Messago Düsseldorf 2016

Wireless Power Coils WE-WPCC- Tx/Rx coils

- Fully compliant to WPC Qi standard
- Efficiency up to 85%
- Supreme shielding characteristics for low leakage inductance
- Outstanding performance due to usage of Litz wire:

✓ lowest R_{DC}
✓ highest Q values

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Magl³C Power Module

DC/DC Step Down Converter with integrated inductor

- **Branch:**
 - Industrial
 - Communication
 - Audio/Video equipment _
 - **Test & Measurement equipment**
 - Medical
- **Application area:**
 - Voltage supply
 - **Multi-Voltage Systems**
 - Software developers with no hardware knowledge

5 types with variable output voltage

2 types with variable output voltage

164

Magl³C Power Module DC/DC Step Down Converter with integrated inductor

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

Magl³C Step-Down Regulator Power Module Family

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016
Trilogy of Magnetics

- 1. LTspice Book
 - \rightarrow How to use and build spice models
- 2. Trilogy of Magnetics
 - → Design Guide for EMI Filter Design, SMPS & RF Circuits
- 3. Trilogy of Connectors
 - \rightarrow Basic Principles and Connector Design Explanations
- 4. ABC of Power Modules
 - \rightarrow Functionality, Structure and Handling of a Power Module
- 5. ABC of Capacitors
 - \rightarrow Basic principles, characteristics and capacitor types

!!! Questions ???

- Do you *still think* ...
 - ... that a DC/DC converter "does not generate Conducted Emission" ???
 - ... that the EMC of a DC/DC converter "isn't affected by the PCB layout" ???
 - ... that an "oscilloscope can't help you to carry out any EMC tests" ???

If you still have questions?

Just call us: we try to help you

Don't give up !!!

Globally available. Locally present!

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Würth Elektronik eiSos GmbH & Co.KG

You can reach us: +49 7942-945-0 +49 7942-945-5000 <u>www.we-online.com</u> eisos@we-online.de

July 2016 - page 19