Statistika

Naloga:

Izmerite vrednosti 40 uporov z isto nominalno vrednostjo in izračunajte povprečno vrednost, standardno deviacijo, minimalno in maksimalno vrednost in izplen za primere, ko bi bila toleranca elementov 1%, 5% in 10%. Narišite histogram in gostoto verjetnosti za Gaussovo porazdelitev verjetnosti in izračunano standardno deviacijo.

Navodila:

Merjenje uporov:

Upore izmerite z virtualnim instrumentom LV_RES_R_v7.vi, ki se nahaja na z:\vaje\res. Na prototipni plošči (proto-board) sestavite merilno vezje in ga priključite na kartico za zajemanje podatkov po spodnji shemi. Spodaj je tudi razpored kontaktov na priključni plošči kartice za zajemanje podatkov (ang.: DAQ – Data AcQuisition card).

NATIONAL INSTRUMENTS

C	B	—	6	8	L	Р	

		_			_								
68	ACH0		61	ACH12		15	DGND		8	+5V	ſ	1	FREQ_OUT
34	ACH8		27	AIGND		49	DIO2		42	PFI3/GPCTR1_SOURCE		35	DGND
67	AIGND		60	ACH5		16	DIO6		9	DGND		2	GPCTR0_OUT
33	ACH1		26	ACH13		50	DGND		43	PFI2/CONVERT	Γ	36	DGND
66	ACH9		59	AIGND		17	DIO1	DIO1 10 PFI1/TRIG2		Γ	3	PFI9/GPCTR0_GATE	
32	AIGND		25	ACH6		51	DIO5		44	DGND	Γ	37	PFI8/GPCTR0_SOURCE
65	ACH2		58	ACH14		18	DGND		11	PFI0/TRIG1	Γ	4	DGND
31	ACH10		24	AIGND		52	DIO0		45	EXTSTROBE	Γ	38	PFI7/STARTSCAN
64	AIGND		57	ACH7		19	DIO4		12	DGND	Γ	5	PFI6/WFTRIG
30	ACH3		23	ACH15		53	DGND		46	SCANCLK	Γ	39	DGND
63	ACH11		56	AIGND		20	EXTREF		13	DGND	Γ	6	PFI5/UPDATE
29	AIGND		22	DAC0OUT		54	AOGND	OGND		DIO3	Γ	40	GPCTR1_OUT
62	AISENSE		55	AOGND	1				14	+5V	Ē	7	DGND
28	ACH4	1	21	DAC1OUT	1				48	DIO7		41	PFI4/GPCTR1_GATE

Pred 1. meritvijo je treba izbrati datoteko v katero naj virtualni instrument (VI) shranjuje podatke in nastaviti vrednost referenčnega upora. Pri meritvah je treba biti pozoren na to, da katerega upora ne izmerimo večkrat, ker vse rezultate instrument zapiše, podvojeno meritev pa je zelo težko odkriti.

Število meritev naj bo nastavljeno na 100. To pomeni, da bo instrument upor izmeril 100-krat in izračunal povprečje vseh 100 meritev. Na ta način dosežemo precej boljšo točnost, kot bi jo sicer.

Statistika:

Za izračun povprečne vrednosti, standardne deviacije in vseh ostalih statističnih vrednosti bomo uporabili Microsoft Excel. Excel lahko odpre kakršnokoli datoteko z ASCII vsebino, tako tudi datoteke s končnico lvm.

Vsi matematični izrazi v Excelu se začnejo z znakom "=". Nato lahko napišemo poljubno formulo in v celici s formulo se bo pokazal rezultat. Operandi so lahko številke ali kode drugih celic (npr. A1). Excel pozna veliko funkcij, ki jih lahko uporabimo (min, max, if, and, ...). Seznam vseh dobimo, če kliknemo »Insert -> Function...« ali ustrezno ikono v orodni vrstici.

V spodnji tabeli je nekaj primerov osnovnih matematičnih operacij, kakor bi jih zapisali v Excelu. Primeri predpostavljajo, da je spremenljivka a v celici A1 in spremenljivka b v celici B1.

Operacija	Zapis v Excelu
<i>a</i> + <i>b</i>	=A1+B1
$a \cdot b$	=A1*B1
a^2	=A1^2
\sqrt{a}	=sqrt(A1)
e^{a}	$=\exp(A1)$
a > b	=A1>B1
$a \ge b$	=A1>=B1
$a \leq b$	=A1<=B1
$a \wedge b$ (logični in)	=and(A1;B1)
$a \lor b$ (logični ali)	=or(A1;B1)
Če je a večji od b naj bo vrednost te celice 1	=if(A1>B1;1;5)
sicer 5	

Ko skopiraš celico s formulo v Excelu se formula ohrani, celica, na katere se formula nanaša pa se spremenijo. Na primer: Če je v celici A2 formula \gg =A1+1« in to celico skopiramo v celico A3, bo v tej celici formula \gg =A2+1«, oziroma če jo skopiramo v celico D5, bo v tej celici formula \gg =D4+1«.

Če želimo, da se pri kopiranju to ne spreminja, lahko ločeno fiksiramo črko in številko tako, da pred črko(ali številko) napišemo znak »\$«. Tako se formula »=A1+1« ne spremeni ne glede na to kam jo skopiramo, v formuli »=A1+1« se ne spreminja črka A, v formuli »=A1+1« pa se nebi spremenila številka 1.

V Excelu je zelo uporabno tudi »Posebno lepljenje...« (ang. »Paste special...«), ki omogoča da skopiramo samo vrednost celice, samo formulo, samo obliko (font, barvo, ipd.), da lahko skopirane celice transponiramo (zamenjamo vrstice in stolpce), itd.

Pred izmerjene podatke vrinite 13 vrstic in po vrsti izračunajte (z Excelovimi funkcijami) povprečno vrednost, standardno deviacijo, minimalno vrednost in maksimalno vrednost.

V naslednjo vrstico zapišite število stolpcev za histogram (8) in v naslednji izračunajte širino intervala za vsak stolpec histograma. V naslednjih treh vrsticah določite za vsak stolpec začetek, konec in sredino intervala. Primer je prikazan na naslednji sliki.

	А	В	С	D	E	F	G	Н	
1	Povprečje	5.533065							
2	St. dev.	0.261735							
3	Min	5.001753	Začetek I	histograma	5	(nastavimo	ročno)		
4	Max	5.954408	Konec histograma		6				
5									
6	N (št. stolpcev histogi	8							
7	širina intervala		0.125						
8									
9	Začetek stolpca	5	5.125	5.25	5.375	5.5	5.625	5.75	5.875
10	Sredina stolpca	5.0625	5.1875	5.3125	5.4375	5.5625	5.6875	5.8125	5.9375
11	Konec stolpca	5.125	5.25	5.375	5.5	5.625	5.75	5.875	6
12	Št. Uporov v intervalu	5	2	7	0	10	8	4	4
13	Upornosti:								
14	5.584094517	0	0	0	0	1	0	0	0
15	5.233120988	0	1	0	0	0	0	0	0
16	5.614931259	0	0	0	0	1	0	0	0
17	5.351225793	0	0	1	0	0	0	0	0
18	5.907250674	0	0	0	0	0	0	0	1
19	5.312796917	0	0	1	0	0	0	0	0

Za vsak stolpec histograma (celice B14 do I54) zapišite funkcijo, ki bo v celico zapisala 1, če vrednost leži v intervalu za dani stolpec in 0, če ne. Če so vse formule pravilno zapisane, mora biti vsota vseh vrednosti v celicah B14 do I54 ravno 40 (število vseh meritev). Vsota posameznega stolpca predstavlja število uporov, ki pade v posamezen interval. Imenuje se absolutna frekvenca. Če absolutno frekvenco preračunamo v procentualno vrednost, se to imenuje relativna frekvenca. Absolutno ali relativno frekvenco vrišemo v histogram.

Preden narišemo histogram, moramo za vsako sredino stolpca izračunati še gostoto verjetnosti, da ima upor to vrednost. Pri tem bomo predpostavili Gaussovo porazdelitev

$$p(X) = \frac{1}{\sigma_x \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{X-\overline{X}}{\sigma_x}\right)^2},$$

kjer je X trenutna vrednost (sredina trenutnega intervala), \overline{X} povprečna vrednost in σ_x standardna deviacija. Kadar zapisujete malo daljšo funkcijo, se ponavadi splača posamezne dele napisati ločeno in jih šele nato zložiti (npr. v en stolpec ulomek(npr. P1), v drug stolpec exponent (npr. Q1) in v tretjem stolpcu vse zložimo (npr. =P1*exp(G1)).

Za risanje histograma je treba vrednosti za na X-os (sredine stolpcev), vrednosti za na 1. Y-os (absolutne frekvence) in vrednosti za na 2. Y-os (gostote verjetnosti) zložiti v tri stolpce. Pri tem si pomagamo s funkcijo »Posebno lepljenje...«.

Graf narišemo tako, da označimo stolpca absolutne frekvence in gostote verjetnosti ter izberemo »Insert -> Charts->Line«.

V dobljenem grafu dvokliknemo na črto gostot verjetnosti (zadeti je treba eno od točk na črti). V prikazanem dialogu v kategoriji »Series Options« izberemo možnost »Secondary Axis«. Nato kliknemo z desnim gumbom še na črto za absolutnih frekvenc in iz pojavnega menija izberemo »Change Series Chart Type...«. Tu izberemo »Clustered Column« (prvi tip grafa na strani).

Nastaviti je treba samo še napise na X osi. Z desnim kliknemo kamorkoli na graf in iz pojavnega menija izberemo »Select Data...«. V skupini »Horizontal (Category) Axis Labels« kliknemo gumb »Edit« in izberemo vse vrednosti iz stolpca »Sredine«.

Sedaj bi morali imeti tak graf, kot je prikazan na spodnji sliki:

Na podoben način, kot smo določili število elementov v posameznem stolpcu določite še število elementov, ki zadostujejo vsaki od toleranc in izračunajte izplene.