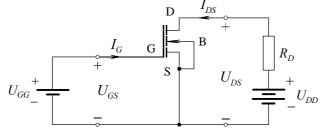

Written exam at the subject SEMICONDUCTOR DEVICES (ELEMENTI POLPREVODNIŠKE ELEKTRONIKE) Ist Bologna grade – 2nd year – Electronics – AE 30. 1. 2017

1. Homogeneously doped silicon block of *p*-type with cross-section $A = 0.01 \text{ cm}^2$ and length L = 1 cm has resistance $R = 40 \Omega$. Calculate concentration of acceptor impurities and draw energy band diagram. Calculate the energy difference (in eV) between the actual and intrinsic Fermi level.

(Data: $\mu_n = 1250 \text{ cm}^2(\text{Vs})^{-1}$, $\mu_p = 440 \text{ cm}^2(\text{Vs})^{-1}$) (Solution: $\sigma = 2,5 \text{ S/cm}$, $N_A = 3,55 \cdot 10^{16} \text{ cm}^{-3}$, $E_{Fi} - E_F = 0,387 \text{ eV}$)


- 2. Deduce equation for value of differential resistance and calculate it in the operating point *I* = 1 mA.
 (Data: *n* = 1,6, *U_T* = 25,66 mV)
 (Solution: *r* = *n*·*U_T*/*I*, *r* = 41,1 Ω)
- 3. Using the given model of a bipolar transistor at high frequencies, calculate the absolute value of the current gain of the transistor at the frequency f = 20 MHz.

(Transistor data: $g_m = 20 \text{ mS}$, $\beta_0 = 100$, $C_{de} = 4 \text{ pF}$). (Solution: $|\beta_f| = 37,0$)

4. In the given circuit with a MOS transistor determine the resistance R_D so that the output voltage U_{DS} equals to half of the supply voltage U_{DD} . Draw the equivalent circuit for small signals, determine the parameter g_{21} and calculate the voltage gain of the circuit, which is defined as the ratio of small amplitude AC component of output to input voltage $A_u = u_{ds}/u_{gs}$. (Data: $U_{DD} = 24$ V, $U_{GG} = 6$ V, $U_T = 3$ V, $C_o \mu_n = 2$ mAV⁻², W/L = 10)

(Solution: saturation, $I_D = 90$ mA, $R_D = 133 \Omega$, $g_{21} = 60$ mS, $A_u = -8$)

You have 60 minutes; you are allowed to use the sheet with basic formulas and constants. The results are expected to be published on tomorrow morning in STUDIS.