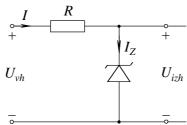
## Written exam at the subject

## SEMICONDUCTOR DEVICES

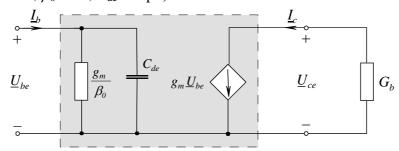
## (ELEMENTI POLPREVODNIŠKE ELEKTRONIKE)


 $I^{st}$  Bologna grade  $-2^{nd}$  year - Electronics - AE 26. 1. 2016

1. Determine semiconductor type for a sample/piece of crystalline Si, which contains homogeneously distributed acceptor impurities of the following concentration  $N_A = 5 \times 10^{17}$  cm<sup>3</sup>. Calculate the energy difference (in eV) between the actual and intrinsic Fermi level and sketch energy band diagram. Calculate the specific conductivity of the sample.

(Data: T = 300 K,  $\mu_n = 1300 \text{ cm}^2(\text{Vs})^{-1}$ ,  $\mu_p = 450 \text{ cm}^2(\text{Vs})^{-1}$ ).

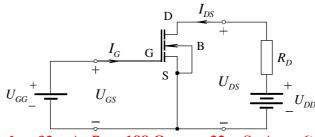
(Solution: p-type,  $U_T = 25.88 \text{ mV}$ ;  $E_F - E_{Fi} = -0.459 \text{ eV}$ ;  $\sigma = 36 \text{ S/cm}$ )


2. In a simple voltage stabilizer in the picture below specify the value of the resistor R so that at the input voltage  $U_{vh} = 24$  V the current through the diode equals  $I_Z = 10$  mA. The diode has parameters  $U_{Z0} = 12$  V and  $r_Z = 15$   $\Omega$ . Take both parameters into account and determine the value of the output voltage  $U_{izh}$  for the given input voltage.



(Solution:  $R = 1185 \Omega$ ,  $U_{izh} = 12,15 \text{ V}$ )

3. Using the given model of a bipolar transistor at high frequencies, calculate the (absolute) value of the <u>current gain</u> of the transistor at the frequency f = 10 MHz.


(Data:  $g_m = 40 \text{ mS}$ ,  $\beta_0 = 75$ ,  $C_{de} = 6 \text{ pF}$ ).



(Solution:  $|\underline{\beta}_f| = 61,2$ )

4. In the given circuit with a MOS transistor determine the resistance  $R_D$  so that the output voltage  $U_{DS}$  equals to half of the supply voltage  $U_{DD}$ . Draw the equivalent circuit for small signals, determine the parameter  $g_{21}$  and calculate the voltage gain of the circuit, which is defined as the ratio of small amplitude AC component of output to input voltage  $A_u = u_{ds}/u_{gs}$ .

(Podatki:  $U_{DD} = 12 \text{ V}$ ,  $U_{GG} = 5 \text{ V}$ ,  $U_T = 3 \text{ V}$ ,  $C_0 \mu_n = 2 \text{ mAV}^{-2}$ , W/L = 8)



(Solution: saturation,  $I_D = 32 \text{ mA}$ ,  $R_D = 188 \Omega$ ,  $R_{21} = 32 \text{ mS}$ ,  $R_u = -6$ )

You have 60 minutes, you are allowed to use the sheet with basic formulas and constants. The results are expected to be communicated on tomorrow morning via e-mail.