## Written exam at the course ELEMENTS of SEMICONDUCTOR ELECTRONICS (ELEMENTI POLPREVODNIŠKE ELEKTRONIKE) I<sup>st</sup> Bologna grade – 2<sup>nd</sup> year – Electronics – AE 30. 1. 2015

- 1. Determine semiconductor type for a sample/piece of crystalline Si which contains homogeneously distributed donor impurities at a concentration of  $1,5 \times 10^{17}$  cm<sup>-3</sup>. Calculate the energy difference (in eV) between the actual and intrinsic Fermi level at a temperature of 340 K and sketch energy band diagram. Calculate the specific conductivity of the sample. (Data:  $n_i = 2,5 \times 10^{11}$  cm<sup>-3</sup>,  $\mu_n = 800$  cm<sup>2</sup>(Vs)<sup>-1</sup>,  $\mu_p = 320$  cm<sup>2</sup>(Vs)<sup>-1</sup>) (Solution: **n-type**,  $U_T = 29,33$  mV;  $E_F - E_{Fi} = 0,390$  eV;  $\sigma = 19,2$  S/cm)
- 2. For the diode with a quality factor of n = 1,9 at room temperature we measured the following two points of the characteristic:
  - $I_1 = 1 \text{ mA at } U_1 = 0,62 \text{ V}$
  - $I_2 = 50 \text{ mA at } U_2 = 0,89 \text{ V}$

Calculate the diode's saturation current, disregarding the influence of the internal resistance in the first point. Afterwards calculate the internal resistance. (Solution:  $I_S = 3 \text{ nA}$ ;  $U_{D2} = 0.811 \text{ V}$ ;  $R_S = 1.86 \Omega$ )

3. In the given circuit with a bipolar transistor determine the base resistance  $R_B$  so that the voltage on the collector resistor  $R_C$  equals  $U_{CC}/2$ . In which range the transistor operates (explain why)? (Data:  $\alpha_F = 0.99$ ,  $U_{BB} = 5$  V,  $U_{CC} = 12$  V,  $R_C = 2.2$  k $\Omega$ ,  $U_{BE} \approx 0.7$  V).



(Solution:  $I_C = 2,73 \text{ mA}; \beta = 99; I_B = 27,6 \mu\text{A}; R_B = 156 \text{ k}\Omega; U_{CB} > 0 \Rightarrow$  active range)

4. For a MOS transistor with an induced *n*-channel, which operates in the point  $U_{GS} = 5$  V,  $U_{DS} = 5$  V, in common source orientation, determine the operating range (under-saturation or saturation) and incremental conduction quadripole parameters  $g_{ij}$ . Draw a replacement model of the transistor for small low-frequency signals in the given operating range (model with *g* parameters).

(Data:  $C_0\mu_n = 1 \text{ mA/V}^2$ , W/L = 0.8,  $U_T = 1.2 \text{ V}$ ) (Solution: saturation;  $g_{11} = 0$ ;  $g_{12} = 0$ ;  $g_{21} = 3.04 \text{ mS}$ ;  $g_{22} = 0$ )

You have 60 minutes, you are allowed to use the sheet with basic formulas and constants. The results are expected to be published on Monday morning in the STUDIS.