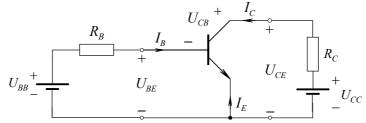
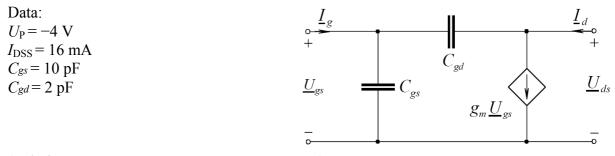

Written exam at courses – UNOFFICIAL TRANSLATION ELEMENTI POLPREVODNIŠKE ELEKTRONIKE and ELEMENTS OF SEMICONDUCTOR ELECTRONICS I. grade – 2. year – Electronics – AE 6. 2. 2014

1. Draw energy band diagram of a silicon sample doped with phosphorus impurities (phosphorus has five valence electrons). The concentration of phosphorus impurities in the sample is $1,5 \cdot 10^{17}$. Calculate the energy difference between the actual and intrinsic Fermi level (in units of eV) and highlight it on the energy band diagram. (Data: $E_{\rm G} = 1,12$ eV, T = 297,8 K, $\mu_{\rm n} = 1300$ cm²/Vs, $\mu_{\rm p} = 450$ cm²/Vs)

(Solution: $E_F - E_{Fi} = 424 \text{ meV}$)


2. For the given voltage stabiliser with load resistor R_b calculate the change in output voltage ΔU_{izh} if the input voltage U_{vh} varies between 8 V and 12 V.

(Data: $U_{Z0} = 5,6 \text{ V}, r_z = 20 \Omega, R = 100 \Omega, R_b = 500 \Omega$)


(Solution: $\Delta U_{izh} = 0,161 \cdot \Delta U_{izh}, \Delta U_{izh} = 644 \text{ mV}$)

3. In the given circuit with *npn* transistor determine the base resistance $R_{\rm B}$ so that the voltage at the collector resistor $R_{\rm C}$ equals to $U_{\rm CC}/2$. The transistor in the active area. (Data: $\alpha_{\rm F} = 0.99$, $U_{\rm BB} = U_{\rm CC} = 12$ V, $R_{\rm C} = 10$ k Ω , $U_{\rm BE} \approx 0.7$ V)

(Solution: $I_C = 600 \ \mu A$, $\beta = 99$, $I_B = 6,06 \ \mu A$, $R_B = 1,86 \ M\Omega$)

4. Calculate the admittance quadripole parameters \underline{y}_{21} in \underline{y}_{22} of a junction FET-a, which operates in the operating point of $U_{GS} = -2.0$ V in the saturation area and can at small high-frequency signals with a frequency f = 10 MHz replaced with the given replacement circuit.

(Solution: $y_{21} = 4 \text{ mS} - j126 \mu\text{S}, y_{22} = -j126 \mu\text{S}$)

You have 60 minutes, you are allowed to use a sheet with basic formulas and constants. The results are expected to be published on Monday 10. 2. till 12 hours in the inf. system.