Written exam at the course NONLINEAR ELECTRONIC CIRCUITS
 II. degree - 1. class / APS, 14. 2. 2023

1. Calculate and draw the transfer function $u_{2}\left(u_{1}\right)$ for the drawn circuit! What is the peak-to-peak value of output voltage $U_{2 \mathrm{pp}}$, if input equals $u_{1}(t)=5 \mathrm{~V} \cdot \sin (\omega t)$?
$U_{B}=2,5 \mathrm{~V}$
$R=100 \Omega$
$r_{D}=10 \Omega$
$U_{K}=0,7 \mathrm{~V}$

(Solution: $u_{2}=u_{1} ; u_{1} \geq-3,2 \mathrm{~V}, u_{2}=1 / 11 \cdot u_{1}+32 / 11 \mathrm{~V} ; u_{1}<-3,2 \mathrm{~V} ; U_{2 p p}=8,36 \mathrm{~V}$)
2. Draw a circuit of a simple voltage stabilizer consisting of an npn transistor, a breakdown diode and a resistor with the parameters given. Consider the specified transistor model for the active region. Replace the diode in the model with a battery $U_{B E}=0,6 \mathrm{~V}$ and a series resistance $R_{E}=0,1 \Omega$. The stabilizer operates in the input voltage range
$12-24 \mathrm{~V}$. Determine the output voltage at the input voltage of 24 V , maximum power on the transistor and output resistance at output current of $0,5 \mathrm{~A}$.
$U_{z 0}=5,6 \mathrm{~V}$
$r_{z}=10 \Omega$
$R=470 \Omega$
$\beta=50$

(S.: $U_{\text {izh }=\text { out }}=5,23 \mathrm{~V}, \boldsymbol{R}_{\text {izh }=\text { out }}=\mathbf{0 , 2 9 2} \Omega, P_{T} \approx 9,39 \mathrm{~W}, P_{T}=\mathbf{9 , 2 1} \mathrm{W}$)
3. Calculate the output voltage u_{2} at the given input signal u_{1}. Simplify the calculation by assuming that the polarization of the diodes depends only on the input signal. Complement the circuit to get the true mean voltage detector of half-wave rectified input signal. $C \rightarrow \infty$

(Solution: $\boldsymbol{U}_{2}=-\mathbf{1 , 5} \mathrm{V}$, diode anti-parallel to the right diode)
4. The switch regulator in the schematics below is designed for output voltage $U_{2}=5 \mathrm{~V}$. The input voltage U_{1} changes in the range of $10-15 \mathrm{~V}$. Determine the inductance, so that the regulator already operates in continuous current mode at load current of 1 A . Assume the transistor to be ideal, for the diode use knee voltage of $U_{K}=0,3 \mathrm{~V}$. What will be the maximum losses on the diode at the load current 2 A ? $\quad f=130 \mathrm{kHz}$

(Solution: $U_{1}=15 \mathrm{~V}: D=0,346, \Delta I_{L}=2 \mathrm{~A}, \boldsymbol{L}_{\text {min }}=\mathbf{9 , 8 9} \boldsymbol{\mu} \mathbf{H}, \boldsymbol{P}_{\boldsymbol{D}}=\mathbf{0 , 3 9 2} \mathbf{~ W}$)
You have 75 minutes, the use of a sheet with basic equations is allowed.
The results are expected to be published tomorrow in STUDIS.
