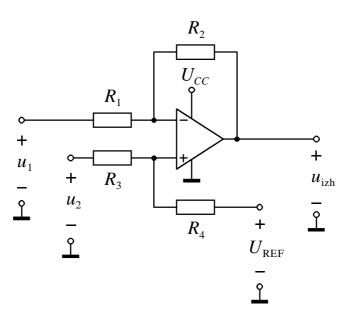
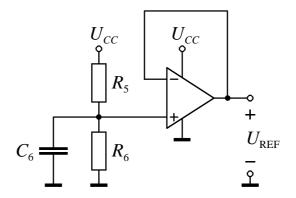

ANALOG ELECTRONIC CIRCUITS

Laboratory work


Exercise 7 – Differential amplifier

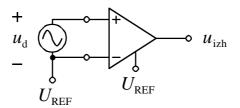
Task:


• Design and construct differential amplifier with transfer function $u_{izh} - U_{REF} = A_d \cdot u_d$.

• Use a single power supply $U_{CC} = 20$ V and operational amplifier of type 741 and the proposed topology. Differential voltage amplification should be set to $A_d = 20$; $(u_d = u_2 - u_1)$.

• Use the proposed circuit to generate reference voltage $U_{\text{REF}} = 5 \text{ V}$.

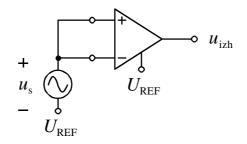
Calculation of component value:


Component values:

$R_1 =$	$R_5 =$
$R_2 =$	$R_6 =$
$R_3 =$	$C_{6} =$
$R_4 =$	

Amplification measurements:

- Measure differential-mode amplification $A_d = u_{izh} / u_d$ (u_d : sine signal, $U_0 = 100$ mV, f = 10kHz).
- Measure common-mode amplification $A_s = u_{izh} / u_s$ (u_s : sine signal, $U_0 = 1$ V, f = 10kHz).
- While measuring A_d and A_s observe the alternating component of the input and output signal. Reference potential for the measurement of u_{izh} is U_{REF} and not GND!
- Obtain CMRR

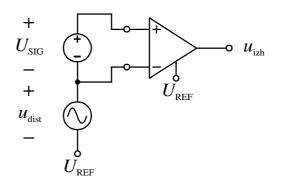

Differential-mode amplification:

 $A_{\rm d} = u_{\rm izh} / u_{\rm d} =$

$$A_{\rm d} =$$
 $A_{\rm d} =$ ${\rm dB}$

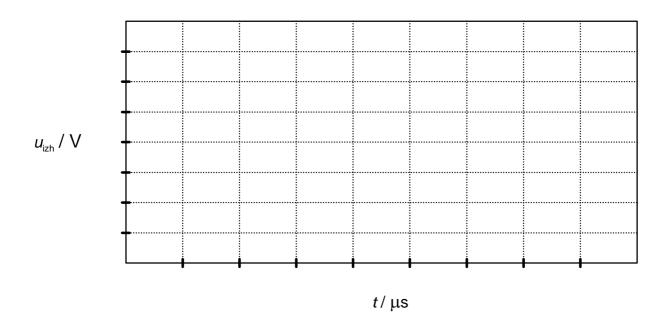
<u>Common-mode amplification</u>:

 $A_{\rm s} = u_{\rm izh} / u_{\rm s} =$


<u>CMRR</u>:

 $CMRR = A_d / A_s =$

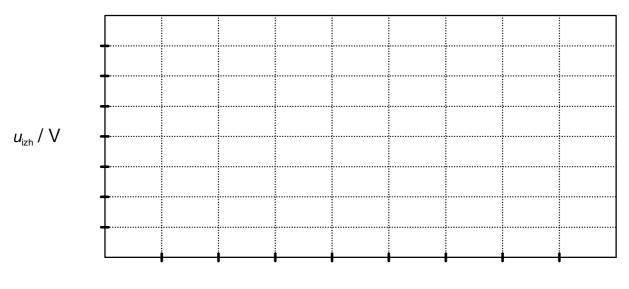
CMRR = dB


Gain measurements of a real signal:

Real excitation of the amplifier will be simulated by using a DC power source U_{SIG} , which represents a useful signal, and function generator u_{dist} , which represents common-mode disturbance (see figure below).

Measurement 1:

Set the voltage of useful signal to $U_{SIG} = 20 \text{ mV}$. Disturbance signal u_{dist} should be represented as a sine signal with frequency of 10 kHz. Change the amplitude of the disturbance signal from 0 V to 3 V in steps of 1 V. Draw all four waveforms of the output signal to the graph.



• Increase the amplitude of the disturbance u_{dist} and find out at which value the amplifier stops working properly. What happens in the circuit at that value?

 $U_{\text{dist max}} =$

Measurement 2:

Set the amplitude of sine disturbance to 2 V and frequency to 10 kHz. Change the voltage of useful signal U_{SIG} from 0 V to 60 mV in steps of 20 mV. Draw all four waveforms of the output signal to the graph.

t/μs

• Increase the amplitude of the useful signal U_{SIG} and find out at which value the amplifier stops working properly. What happens in the circuit at that value?

 $U_{\rm SIG max} =$

izh – izhod, english output